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Abstract 15 

Abundance indices from scientific surveys are key stock assessment inputs, but when the availability of fish varies 16 

in space and time, the estimated indices and associated uncertainties do not accurately reflect changes in 17 

population abundance. For example, indices for many semi-pelagic species rely on acoustic and bottom trawl gear 18 

that differ in water column coverage, and so spatiotemporal trends in fish vertical distribution affect the 19 

availability of fish to each gear type. The gears together cover the whole water column, and so in principle can be 20 

used to estimate more accurate combined indices of the whole population. Here, we extend previous methods 21 

and develop a vertically-integrated index which accounts for spatiotemporal correlation and works with data 22 



unbalanced spatially or unpaired from distinct surveys. Using eastern Bering Sea walleye pollock (Gadus 23 

chalcogrammus) as an example, we identified clear spatial and temporal patterns in vertical distribution and gear 24 

availability from 2007-2018. Estimated acoustic annual vertical availability ranged from 0.339 to 0.888 among 25 

years, and from 0.588 to 0.911 for the bottom trawl survey. Our results highlight the importance of accounting 26 

for the spatiotemporal and vertical distribution of semi-pelagic fish to estimate more accurate indices, and provide 27 

important context for gear availability.  28 

Introduction  29 

Information about fish distribution in space and time is valuable both for understanding diverse ecological 30 

processes and for guiding applied fisheries management decisions. One important applied case is in quantifying 31 

how the relative biomass of a fish stock varies over time, known as an index of biomass or abundance. These 32 

indices are typically derived from catch and effort data after controlling for external factors (index standardization; 33 

Maunder and Punt, 2004). Resulting indices then inform stock assessments either by direct application or within 34 

statistical population dynamics models to provide fisheries management advice (Hilborn and Walters, 1992), and 35 

so the accuracy and precision of indices is important to provide reliable fisheries management advice. The 36 

accuracy of indices can vary based on changes in the catchability coefficient, a parameter typically used to link 37 

indices to modelled abundances caused by changes in survey gear efficiency and fish availability (i.e., the fraction 38 

of the stock available to the gear). Scientific surveys of fish stocks use standardized sampling and data collection 39 

protocols to minimize changes in the catchability coefficient (Gunderson, 1993). Despite this, fish availability may 40 

still vary in time and space and adversely affect the index trends and accuracy of uncertainty estimates (e.g., 41 

Kotwicki et al., 2018; Kotwicki and Ono, 2019). Two important examples of changing availability to a survey are 42 

when the population moves outside of the spatial extent of the survey (spatial availability), or if fish are present 43 

but only partially susceptible to detection by the sampling method (gear availability). Of particular concern is when 44 

availability is inconsistent among years, because that appears as a change in abundance which can have negative 45 



consequences on the management of a stock (Hilborn and Walters, 1992). Consequently, explicitly accounting for 46 

variation in availability should improve the accuracy of indices for stock assessments and the management advice 47 

they provide.  48 

 49 

Vertical availability has been a longstanding concern for semi-pelagic species because there are vertical regions 50 

unavailable to gears used for sampling (Godø and Wespestad, 1993; Michalsen et al., 1996). Bottom trawls miss 51 

pelagic fish above the effective fishing height, while acoustic gear misses demersal fish which cannot be detected 52 

acoustically (Dead zone; Fig. 1; Kotwicki et al., 2013). Consequently, as the vertical distribution changes (e.g., a 53 

population-level shift off bottom, or localized shifts caused by dynamic environmental conditions), the proportion 54 

of fish available to each gear type will also vary in space and time (e.g., Michalsen et al., 1996; Kotwicki et al., 55 

2015). Since neither gear can enumerate the entire population in the presence of variation in vertical distribution, 56 

previous studies have recognized the need to combine estimates from acoustic and bottom trawl surveys as a way 57 

to provide more accurate abundance indices (e.g., Ona et al., 1991; Godø and Wespestad, 1993; Aglen, 1996; 58 

Everson et al., 1996). Some studies investigated whether acoustic observations at and between trawl locations 59 

could reduce variance (e.g., Beare et al., 2004; Bouleau et al., 2004; Hjellvik et al., 2007). In contrast, Kotwicki et 60 

al. (2018) predicted gear overlap as a function of environmental covariates using only acoustic data collected at 61 

trawling locations (i.e., paired data). These studies relied on a single survey using both gears, and none directly 62 

estimated spatially-correlated vertical density (and thus availability) which we consider limitations in many 63 

situations. 64 

 65 

Accounting for spatial autocorrelation is important because it has several advantages over conventional post-66 

stratification of design-based estimators of survey data.  This includes improved precision with little change in bias 67 

and the ability to extract spatial statistics such as range shifts or concentration that provide useful contextual and 68 

ecological information (Thorson et al., 2015b). Spatiotemporal index standardization methods are increasingly 69 



used in a variety of situations (e.g., table 1 of Thorson, 2019), and are available as stand-alone analyses (e.g., Kai 70 

et al., 2017; Monnahan and Stewart, 2018) or within generic software platforms such as the vector autoregressive 71 

state space modeling platform (VAST; Thorson and Barnett, 2017; Thorson, 2019). Another important advantage 72 

of spatial modeling is the capability to mitigate potential bias arising from spatially unbalanced sampling. This is 73 

particularly advantageous when combining gears because it means the data from the two gear types do not need 74 

to sample at the same places in space and time but are sufficiently similar in seasonal timing that they sample the 75 

same spatiotemporal patterns. This may occur if e.g., one gear is unavailable at some locations, or if there are 76 

distinct acoustic and bottom trawl surveys with different sampling designs and protocols and may cover different 77 

but overlapping spatial footprints. In the extreme, one gear type may be missing for one or more entire years due 78 

to budget limitations or planned survey reductions, or unexpected cancellations (O’Leary et al., 2020). Spatial 79 

models thus provide both improved estimators and the flexibility to use a wider variety of data beyond spatially 80 

balanced, paired data, effectively expanding the potential applications to a wider set of stocks and regions. 81 

 82 

Despite popularity and advantages of spatial models, no previous analyses estimated the vertical distribution of 83 

the study species using such methods. We hypothesize that extending previous analyses of vertical distribution 84 

(Kotwicki et al., 2013, 2018) using spatiotemporal index standardization methods will account for changes in gear 85 

availability and provide more accurate indices, i.e., those that are more likely to be proportional to true 86 

abundance. For instance, consider the vertical distribution of walleye pollock (Gadus chalcogrammus; hereafter 87 

pollock) in the eastern Bering Sea (EBS), one of the largest and most valuable commercial fisheries in the US with 88 

$1.38 billion USD in wholesale value in 2018 (table 7 of Ianelli et al., 2019). The vertical distribution of pollock is 89 

affected by abiotic sources such as water temperature, current velocity, bottom depth, light conditions, sediment 90 

size, and biotic sources including size-structure and prey availability (Kotwicki et al., 2013, 2015). The pollock stock 91 

assessment uses design-based indices based on two distinct surveys as independent data sources due to a lack of 92 

methodology to estimate a reliable combined index. Currently, estimates of time-varying bottom trawl 93 



catchability are used to account for variation in vertical availability (Ianelli et al., 2019). Estimating a combined 94 

index is not unique to pollock or the Bering Sea region, but extends to other gadoids and semi-pelagic species such 95 

as Argentinian hake (Álvarez-Colombo et al., 2014), various species in the Barents Sea (Aglen, 1996; Jakobsen et 96 

al., 1997; Ono et al., 2018), cod and haddock in the Northeast Atlantic (e.g., Godø and Wespestad, 1993; Michalsen 97 

et al., 1996), among others. Thus, a modeling framework capable of combining acoustic and trawl data, while 98 

accounting for spatial dependence, would be valuable for global stock assessment and management. 99 

 100 

Here we present a method to explicitly estimate the vertical distribution of fish density in discrete depth layers 101 

and how it changes in space and time using two disparate data sources. We develop and describe a new vertically-102 

integrated ‘combined’ spatiotemporal index standardization method that can be fitted to paired or unpaired 103 

acoustic and bottom trawl data with missing years and unbalanced spatial sampling designs, and accounts for 104 

spatial autocorrelation, covariate effects, and gear efficiency (catchability). We use pollock survey data from 2007 105 

to 2018 as a case study, estimating the vertical gear availability (percentage fish available) of each gear type in 106 

space, and aggregated total vertical density across space to construct an abundance index. Finally, we use 107 

simulation to test the statistical properties of the combined index. This allows us to evaluate biases in stock 108 

assessment when changes in fish vertical distribution occur but are ignored in their evaluation. We show the 109 

extent that this new method presented here can improve an index when fish are vertically distributed with annual 110 

variation in that distribution.  111 

Methods  112 

In this section we provide an overview of the analysis, discuss the data requirements, and provide the statistical 113 

details of the combined index. We then describe a fit to pollock as a case study and do a series of model 114 

simulations to test the properties of this index, including if we mistakenly assume that there is no variation in 115 

vertical availability of fish.  116 



Modeling framework overview and assumptions 117 

Conceptually, we assume that fish density d in a given year varies in three-dimensional space as a function of 118 

spatially-correlated physical and biological processes. This three-dimensional space includes latitude, longitude, 119 

and depth (vertical dimension above seafloor). Throughout this work, the water column is divided into three 120 

vertical layers referenced from the seafloor. We use data from two survey platforms to estimate this three-121 

dimensional density: one survey that uses bottom trawls to catch fish on and near the sea floor, and the second 122 

using acoustic echosounders that detect fish in mid-water but miss near-bottom fish (Fig. 1a). The acoustic 123 

observations can be post-processed into arbitrary vertical layers, to be treated separately. The whole water 124 

column (with the exception of a near-surface acoustic blind zone) is thus sampled by at least one survey and this 125 

allows the density d to be estimated for each depth layer (i.e., vertically). 126 

 127 

The depth layers are defined by two heights off bottom h1 (the lower limit of the acoustic gear) and h2 (the upper 128 

limit of the bottom trawl gear). These define three depth layers: 1) from sea bottom to h1 which is only sampled 129 

by the trawl, 2) h1 to h2 which is sampled by both gears (the overlap layer), and 3) above h2 sampled only by the 130 

acoustic gear (Fig. 1a). To illustrate, assume the true vertically-integrated density (in kg/km2) of fish is 500 below 131 

h1, 250 between h1 and h2, and 40 above h2, for a total (entire water column) vertical density of 500+250+40=790. 132 

The fish available to the acoustic gear is then 290/790 ≈ 0.37 and to the bottom trawl is 750/790 ≈ 0.95. Note that 133 

the sum of vertical availabilities exceeds one because of the overlap in sampling. Now, after sampling with error, 134 

we have two acoustic observations (expected values 250 and 40 since they sample from the overlap layer and 135 

layer above h2) and one bottom trawl observation with an expected value of 750 (the two layers below h2; Fig. 1). 136 

Our goal is to infer the density in each depth layer while accounting for spatial correlation and other factors. From 137 

these estimates, we can integrate over areas and depth layers to get total biomass, vertical availability, and other 138 

quantities of interest and investigate how they vary in space and time. 139 

 140 



Acoustic and bottom trawl surveys 141 

We provide details of the data collection and processing in the supplementary materials, and only provide key 142 

summaries here. The total spatial extent of our study, the eastern Bering Sea (EBS), is defined as the spatial extent 143 

of the bottom trawl data (Fig. 2), to maintain consistency with previous studies and the current stock assessment 144 

(Ianelli et al., 2019). Acoustic data used in this analysis were available annually from 2007-2010 and biennially 145 

from 2010-2018 along transects that are spaced at 20 nmi apart (Fig. 2) vertically between 0.5 m off bottom to 16 146 

m from the surface. Some acoustic transects extended beyond the extent of the EBS as defined here and were 147 

filtered out. These acoustic data were processed to be referenced from the sea floor instead of the sea surface as 148 

is commonly done, and were aggregated into groups of 20 consecutive 0.5 nmi intervals, resulting in n=3,830 total 149 

observations, to reduce the computational burden and result in roughly the same number of observations 150 

between gears.  Annual bottom trawl (BT) surveys have been conducted in the EBS since 1982, but for our study 151 

we used data from 2007-2018 to match available data from the acoustic surveys, resulting in n=4,511 observations 152 

(Table 1, Fig. 2). 153 

 154 

It is important to highlight that the observations comprising these two data sets were not paired nor coordinated 155 

in the collection process. They are from different vessels at different times using different spatial sampling 156 

protocols, and these differences in spatial and temporal coverage could affect our analysis. The acoustic survey 157 

has typically not sampled the northeastern region of the EBS because it was assumed that there were negligible 158 

densities of pollock off-bottom (> 0.5 m) nearer to the coast (Fig. 2). However, new evidence suggests that this 159 

assumption may be incorrect in recent years (see Fig. 8 of Levine and De Robertis 2019). Our case study could be 160 

affected by this assumption of negligible densities near the coast because there is a large region of missing acoustic 161 

data with presumably low densities in earlier years but potentially higher (but still relatively small) densities in 162 

recent years. In a preliminary analysis, we explored two approaches to address this issue. First, we used the data 163 

in its original form with “missing” acoustic data nearer to the coast (the model then extrapolated densities into 164 



this domain). As a second option, we extended the acoustic transects to cover the inner domain assuming they 165 

would have observed mostly zeroes and small positive observations. These “inflated” observations (Fig. 2) were 166 

then appended to the observed data. We proceed with the latter solution because it more closely represents how 167 

the gear types are currently analyzed for use in the stock assessment, and the former led to implausibly high 168 

estimates in the unsampled region (Supplementary Material). We acknowledge this as a key assumption and 169 

discuss it further below. 170 

 171 

Differences in the timing of the two surveys were evaluated by calculating the time difference between the closest 172 

bottom trawl for each acoustic observation. We found clear spatial patterns in the time differences (Fig. S1), with 173 

some observations being up to a month apart. Both surveys only sample during daytime to avoid effects of diurnal 174 

vertical migrations by pollock (defined as 30 minutes after sunrise and 30 minutes before sunset for the bottom 175 

trawl and between 0600-2400 hours for the acoustic survey per their protocol; Stauffer, 2004; Honkalehto et al., 176 

2018). We proceeded with the analysis under the assumption that our model predicts average density during 177 

summer months of a given year. However, we recognize that the spatiotemporal differences in design between 178 

the two surveys is not ideal and examine model residuals for negative effects of this. Another consequence of the 179 

spatiotemporal mismatch is that bottom depth (bottom trawl averaged 81.1 m and acoustic 98.3 m) was the only 180 

covariate available for use. 181 

 182 

Model structure 183 

We define depth layer c=1 between bottom-0.5 m, c=2 between 0.5-16 m off bottom (the effective fishing height), 184 

and c=3 between 16 m off bottom and 16 m below the surface, with a corresponding total vertical density (in 185 

kg/km2) d=d(1)+d(2)+d(3), where d(c) is expected density in depth layer c. Then the acoustic gear samples from 186 

d(2) (data set referred to as “AT2”) and d(3) (data set “AT3”), both of which are separated in post-processing as 187 

described above, while the bottom trawl (BT) samples from d(1)+d(2) combined, with no ability to post-process 188 



data to c=1 and c=2 separately. Note that both gears sample from c=2, the overlap layer, and this is a key structural 189 

feature of our model.  190 

 191 

Then we assume a widely-used “delta-model” to represent the observations (Aitchison, 1955; Maunder and Punt, 192 

2004), where the two key processes are the expected values of encounter probability (p) and positive observations 193 

(r), and are separate processes. We use the Poisson-link reformulation of the delta model (Thorson, 2017), where 194 

n represents the “group density” and w is the “biomass per group.” Given n and w, p and r are calculated for depth 195 

layer c as 196 

 197 

𝑝𝑝(𝑐𝑐) = encounter rate = 1 − exp(−n(c)) ∈ (0,1) (1) 198 

𝑟𝑟(𝑐𝑐) = positive observation =
𝑛𝑛(𝑐𝑐)𝑤𝑤(𝑐𝑐)
𝑝𝑝(𝑐𝑐) ∈ (0,∞), (2) 199 

 200 

where the phrase ‘positive observation’ represents either positive catches or backscatter depending on the data 201 

type. The expected value of biomass density in layer c is then 𝑑𝑑(𝑐𝑐) = 𝑝𝑝(𝑐𝑐)𝑟𝑟(𝑐𝑐) = 𝑛𝑛(𝑐𝑐)𝑤𝑤(𝑐𝑐). These expected 202 

values represent averages over the time period in which sampling occurs, and then are used in calculating the 203 

likelihood of the observed data.  204 

 205 

Deriving the combined likelihoods 206 

We compare model expectations of density to the observations (b) using the delta-likelihood formulation:  207 

 208 

𝑓𝑓𝐵𝐵(𝑐𝑐)(𝑏𝑏) = � 1 − 𝑝𝑝(𝑐𝑐) 𝑏𝑏 = 0
𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙(𝑏𝑏|𝑟𝑟(𝑐𝑐),𝜎𝜎𝑀𝑀) 𝑏𝑏 > 0 , (3) 209 

 210 



where we assume g is a log-normal distribution for the three data sets (AT2, AT3, BT) with estimated standard 211 

deviation of the positive observations, 𝜎𝜎𝑀𝑀 , for the two gears (i.e., 𝜎𝜎𝐵𝐵𝐵𝐵  and 𝜎𝜎𝐴𝐴𝐵𝐵). The likelihoods for AT2 are 212 

𝑃𝑃(𝑏𝑏 = 0) = 1 − 𝑝𝑝(2) for zero observations and 𝑓𝑓𝐵𝐵(𝑐𝑐)(𝑏𝑏) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙�𝑏𝑏;  log�𝑟𝑟(2)� ,𝜎𝜎𝐴𝐴𝐵𝐵� for positive 213 

observations (e.g., table 1 of Thorson, 2019), and those for AT3 are the same except that c=3.  214 

 215 

Likelihood equations for the bottom trawl must account for the fact that it samples from layers c=1 and c=2 jointly 216 

so we derive them here. A non-encounter in the BT (b=0) means that no fish were encountered in either layer. If 217 

we assume the bottom trawl gear samples from the first two layers independently, conditioned on the model 218 

estimates, then the probability of not encountering any fish in a trawl sample is: 219 

 220 

𝑃𝑃(𝑏𝑏 = 0) = 1 − 𝑝𝑝(𝐵𝐵𝐵𝐵) = �1 − 𝑝𝑝(1)��1 − 𝑝𝑝(2)� = exp (−𝑛𝑛(1) − 𝑛𝑛(2)), (4) 221 

  222 

where p(BT) is our notation signifying the joint sampling of layers 1 and 2 with a bottom trawl.  223 

 224 

When b>0, we assume the expected catch is approximated by the sum of expected catches r across the first two 225 

layers: 226 

 227 

𝑓𝑓𝐵𝐵(𝑐𝑐)(𝑏𝑏) = lognormal�𝑏𝑏;  log�𝑟𝑟(𝐵𝐵𝐵𝐵)� ,𝜎𝜎𝐵𝐵𝐵𝐵� , (5) 228 

where 229 

 230 

𝑟𝑟(𝐵𝐵𝐵𝐵) = 𝑛𝑛(1)𝑤𝑤(1)+𝑛𝑛(2)𝑤𝑤(2)
1−exp�−𝑛𝑛(1)−𝑛𝑛(2)�

. (6) 231 

 232 

Note that 𝑑𝑑(𝐵𝐵𝐵𝐵) = 𝑝𝑝(𝐵𝐵𝐵𝐵)𝑟𝑟(𝐵𝐵𝐵𝐵) = 𝑛𝑛(1)𝑤𝑤(1) + 𝑛𝑛(2)𝑤𝑤(2) = 𝑑𝑑(1) + 𝑑𝑑(2), such that the expected bottom trawl 233 

observations are the sum of the density in the first and second vertical layers, as desired. 234 



 235 

Equations (4)-(6) comprise the key methodological development in our vertically-integrated model, and were 236 

derived assuming the Poisson-link delta-model. Similar derivations could be done for a conventional delta-model 237 

but were not explored here. The derivation required an assumption of statistical independence for sampling of 238 

the two layers by the bottom trawl (i.e., that measurement errors are independent for those two layers 239 

conditional upon estimated density in each layer). In the discussion section, we hypothesize why statistical 240 

independence might be true and outline possible approaches to test it. The derivation also assumed that the sum 241 

of the expected positive catches in the first two depth layers approximates the bottom trawl data. As shown 242 

above, our approximation guarantees that the expected density is the same as the true combined distribution. 243 

However, there is no guarantee that other properties such as variance or higher statistical moments will match. 244 

We use Monte Carlo sampling to demonstrate that for the estimated sampling properties of our case study this 245 

approximation holds well (Fig. S2), and encourage this test for other applications. 246 

 247 

Model predictors 248 

Next we define how the model expectation of n and w are determined, from which p and r can be calculated from 249 

eqns. (1-2). We assume fish density varies continuously in space, and changes annually in response to spatially-250 

dynamic environmental and biological processes. Thus, we include spatial, temporal, spatiotemporal, and 251 

covariate effects in the context of modeling spatial data. We assumed linear effects of explanatory variables on 252 

the log of the expected value w, as follows: 253 

log𝑤𝑤(𝑖𝑖) = log𝑤𝑤(𝑐𝑐𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝑥𝑥𝑖𝑖)

= 𝛽𝛽𝑤𝑤(𝑐𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖) + �𝐿𝐿𝜔𝜔𝑤𝑤(𝑐𝑐𝑖𝑖,𝑓𝑓)𝜔𝜔𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑓𝑓)
3

𝑓𝑓=1

+ �𝐿𝐿𝜀𝜀𝑤𝑤(𝑐𝑐𝑖𝑖 ,𝑓𝑓)𝜀𝜀𝑤𝑤(𝑠𝑠𝑖𝑖 ,𝑓𝑓, 𝑡𝑡𝑖𝑖)
3

𝑓𝑓=1

+ 𝛾𝛾𝑤𝑤(𝑐𝑐𝑖𝑖)𝑋𝑋𝑤𝑤(𝑥𝑥𝑖𝑖) + 𝜆𝜆𝑤𝑤𝑄𝑄(𝑖𝑖), (7) 254 

where ci, si, ti, and xi are the depth layer, spatial cell, year, and covariate for observation i, respectively. Each layer 255 

and year has an intercept term, 𝛽𝛽𝑤𝑤(𝑐𝑐, 𝑡𝑡), which we assumed followed a Gaussian random walk temporal smoother, 256 

necessitated by the years without acoustic data (Fig. 2). Specifically, 𝛽𝛽𝑤𝑤(𝑐𝑐, 1)~𝑁𝑁�𝜇𝜇𝛽𝛽𝑤𝑤(𝑐𝑐),𝜎𝜎𝛽𝛽𝑤𝑤
2 (𝑐𝑐)� for t=1 and 257 



𝛽𝛽𝑤𝑤(𝑐𝑐, 𝑡𝑡)~𝑁𝑁�𝛽𝛽𝑤𝑤(𝑐𝑐, 𝑡𝑡 − 1),𝜎𝜎𝛽𝛽𝑤𝑤
2 (𝑐𝑐)�  for t>1, where the mean 𝜇𝜇𝛽𝛽𝑤𝑤(𝑐𝑐) and variance 𝜎𝜎𝛽𝛽𝑤𝑤

2 (𝑐𝑐) are fixed effects and the 258 

𝛽𝛽𝑤𝑤 terms are random effects, with separate estimates for each c. An autoregressive process could be employed 259 

instead, but is not presented for the case study here. The spatial and spatiotemporal random effects, ω and ε, are 260 

Gaussian Markov random fields used by the SPDE method (Lindgren et al., 2011), which is a computationally 261 

efficient approach for approximating Gaussian continuous spatial processes (Illian et al., 2012; Thorson et al., 262 

2015b). We used 400 spatial knots for the approximation (spatial resolution). We only present a fully specified 263 

spatiotemporal model (i.e., ω and ε for both linear predictors) because configurations with less spatial complexity 264 

fit poorly based on model selection with PSIS-LOO (Vehtari et al., 2017) and estimated indices (Supplementary 265 

material). We also included the same Gaussian random walk temporal smoothing structure on the spatiotemporal 266 

effects, 𝜀𝜀𝑤𝑤(𝑠𝑠, 𝑐𝑐, 𝑡𝑡), as specified above for the annual intercepts above (see eqn. 2.10 of Thorson 2019). Note that 267 

this formulation implies a spatially correlated surface of log w for each of the three depth layers, and that values 268 

at each point in space are correlated across years for each layer. The correlation in log w implies a spatiotemporal 269 

correlation in biomass density in each layer, given n and as detailed above. How log w is correlated among the 270 

depth layers at a given point in space depends on how the model is configured as follows.  271 

 272 

The sums across factors (f) is the spatial factor analysis approach where the estimated loadings matrices 𝐿𝐿𝜔𝜔𝑤𝑤  and 273 

𝐿𝐿𝜀𝜀𝑤𝑤  relate to the correlations among depth layers at the same points in space (Thorson et al., 2015a). Instead of 274 

directly estimating covariances, triangular loadings matrices (denoted L) representing the Cholesky decomposition 275 

of the covariance matrix are estimated as fixed effects. They can be fully parameterized, use a low-rank 276 

approximation by specifying fewer than three factors, or assumed to be diagonal (so layers are independent). 277 

Initial attempts to estimate loadings matrices in the case study with three factors had severe convergence issues 278 

(Supplementary Material), so we switched to diagonal loadings matrices. This does not preclude correlation 279 

among layers, but means the correlation is not directly estimated. In our analysis the largest effect of this is that 280 



the information from the bottom trawl cannot be used to infer fish density in the top depth layer, so only the 281 

spatiotemporal smoother informs that layer in years without acoustic data. 282 

 283 

We included a single catchability parameter 𝜆𝜆𝑤𝑤 to allow differences between gear types, coded as Q=0 for acoustic 284 

and Q=1 for bottom trawl observations because previous studies suggest potential differences in gear efficiency 285 

and thus catchability (Kotwicki et al., 2013). Configured this way, the quantity e𝜆𝜆𝑤𝑤  represents the ratio of expected 286 

observations (trawl to acoustic), all else being equal. We also explored the effect of alternative structures for 287 

catchability, including a time-varying structure and constant catchability in the first linear predictor n 288 

(Supplementary Material). We included normalized log depth (due to the skewness of depth) as a covariate, 𝛾𝛾𝑤𝑤(𝑐𝑐). 289 

Other covariates were unavailable (see above) although they could be incorporated if available.  290 

 291 

The structure for n is identical, except that it excludes the catchability parameter (i.e., 𝜆𝜆𝑛𝑛 = 0) and is thus left off 292 

for brevity. Equations 1-7 define model expectations and data likelihoods, so now we turn to model fitting. In 293 

addition to this combined model, we use above model description but fit it separately to the acoustic and bottom 294 

trawl data, and additionally compare our predictions to design-based estimates of the same data sets (Conner and 295 

Lauth, R. R., 2017; Honkalehto et al., 2018). 296 

 297 

Model fitting 298 

We fit our model in the software framework VAST (Thorson and Barnett, 2017; Thorson, 2019), after adding the 299 

ability to combine likelihoods (eqns. 4-6), available with release number 1.6.0 (see Supplementary Materials for 300 

details and reproducible example). VAST is written in the modeling framework Template Model Builder (TMB; 301 

Kristensen et al., 2016) and these models are typically fit with maximum marginal likelihood estimation. But in the 302 

combined model of pollock data the Laplace approximation to the marginal likelihood (Skaug and Fournier, 2006) 303 

had numerical issues and TMB consistently crashed during optimization (i.e., it could not find the maximum 304 



likelihood estimates regardless of initial values). The issue was clearly related to the likelihood for the bottom 305 

trawl data (eqn. 6), but we were unable to fully diagnose and avoid the core cause. Instead, we switched to 306 

Bayesian inference using the R package tmbstan (Monnahan and Kristensen, 2018), which provides an interface 307 

for TMB models to the Bayesian platform Stan (Carpenter et al., 2017), through the R package rstan (R Core Team, 308 

2018; Stan Development Team, 2018). Stan implements the no-U-turn sampler which is an efficient MCMC 309 

algorithm for drawing posterior samples from large, complex hierarchical models (Hoffman and Gelman, 2014; 310 

Monnahan et al., 2017). Bayesian integration with MCMC provided an alternative algorithm for inference that 311 

worked better than maximum marginal likelihood estimation, but required explicit priors (see below). 312 

 313 

As configured for the case study, the combined model has 32,520 random effects (intercepts, spatial and 314 

spatiotemporal effects for each depth layer) and 33 fixed effects, 18 of which were hypervariance parameters 315 

(Table 2). The spatial correlation and anisotropic parameters (logkappa and ln_H_input in VAST) proved to be 316 

inestimable in preliminary runs given their poor mixing relative to the other parameters. Consequently, we set 317 

these parameters to mean values from the preliminary runs, and tested the sensitivity to this assumption 318 

(Supplementary Materials).  319 

 320 

We used informative priors for some parameters (Figs. S3a,b). The prior for the catchability parameter 321 

𝜆𝜆𝑤𝑤~𝑁𝑁(0,0.15) was based on expert knowledge that the catchability of gear types should not be very different. 322 

This is similar to the “bias ratio” from Kotwicki et al. (2018), but we did not use results from that study to inform 323 

the prior so that we could instead compare results as a way to corroborate our approach. Priors on the effects of 324 

standardized depth by layer were broad and normally distributed: 𝛾𝛾𝑛𝑛(𝑐𝑐), 𝛾𝛾𝑤𝑤(𝑐𝑐)~𝑁𝑁(0,5). For the random walk 325 

temporal structure, we set priors on the initial intercept to give approximately uniform encounter probability and 326 

the log of positive observations between roughly 1 and 13, which we found reasonable based on expert knowledge 327 

of the system and other species. For the remaining parameters, we used implicit uniform priors. We ran six chains 328 



of 800 iterations, each initialized from diffuse values and using the first 300 iterations as warmup. We increased 329 

the target acceptance rate to 0.85 to eliminate divergences and set the maximum tree depth to 17. As typical and 330 

recommended for Stan analyses, we use posterior medians and credible intervals to quantify estimates and 331 

uncertainty, ensured sufficient estimated effective samples for all parameters (at least 800), the potential scale 332 

reduction statistic diagnostic 𝑅𝑅� < 1.02 for all parameters, and no divergent NUTS transitions (Gelman et al., 2014; 333 

Stan Development Team, 2017). We also used posterior predictive distributions, where observed data are 334 

compared to data simulated given the posterior draws, to validate the model (Gelman et al., 2014; Conn et al., 335 

2018).  336 

 337 

Simulation study 338 

We used a simulation experiment to check the statistical properties of the combined method, and demonstrate 339 

potential inaccuracies in biomass indices. The model used to generate the pseudo data closely reflected the 340 

structure of our fitted case study model, but omitted spatiotemporal variation and had lower hypervariances and 341 

observation errors for computational expediency. We generated unbiased random samples from the ‘assumed 342 

truth’ using the two-step sampling process described above (eqns. 1-6), and fit the combined model. We also 343 

made “independent” estimates where data from the acoustic and bottom trawl surveys were fit separately 344 

mimicking the standard application of these data for assessment purposes. We specified changes in the “true” 345 

index by manipulating the annual effects (𝛽𝛽𝑛𝑛,(𝑐𝑐, 𝑡𝑡) and 𝛽𝛽𝑤𝑤,(𝑐𝑐, 𝑡𝑡)) for the three depth layers to produce a vertical 346 

distribution that had a downward trend for depth layer <0.5 m, a constant trend for the overlap, and an increasing 347 

trend for >16 m. Such trends increase availability to the acoustic survey and decrease the availability for the 348 

bottom trawl. We computed relative error of the estimated log-index to the log total biomass as a performance 349 

metric and examined estimation bias. The simplified structure of the simulation testing allowed use maximum 350 

marginal likelihood instead of Bayesian integration, which also allowed us to estimate the geostatistical 351 

parameters. We used a maximum gradient of 0.01 as a cutoff for optimizer convergence (i.e., the largest absolute 352 



derivative of the marginal likelihood with respect to the parameters), as deviations from zero indicate lack of 353 

convergence. Further details of the simulation are given in the Supplementary Materials.  354 

Results 355 

Case study on walleye pollock 356 

The fit passed MCMC convergence diagnostics and the posterior predictive distributions showed no systematic 357 

patterns in space (Fig. S4a-c) nor against the time difference between the surveys (Fig. S5). Most marginal 358 

posteriors were different from the prior, indicating meaningful information in the data to update them (Table 2; 359 

Figs. S3a,b). The only exceptions were the 𝜇𝜇𝛽𝛽𝑛𝑛  parameters representing the annual process for the n component, 360 

which had broad, but informative priors. Of the estimated variance terms, only the terms for the annual intercepts 361 

had any meaningful probability mass around zero. All three depth layers had meaningful total (spatial + 362 

spatiotemporal) variance, with the spatial component representing about 67.1-82.2% of total variance by depth 363 

layer (Table S1). The catchability parameter 𝜆𝜆𝑤𝑤 was estimated to be 0.17 (-0.01 to 0.34) which after 364 

exponentiation represents 1.19 (0.99-1.42) times higher catch for bottom trawl vs. acoustic survey in the 365 

overlapping depth layer for a given place and time. The median posterior for the covariate effects on depth were 366 

positive for both the n and w predictors for all depth layers, suggesting increasing encounter probability and 367 

positive observations with increasing depth. The only exception was the effect 𝛾𝛾𝑛𝑛(1), which was centered at zero 368 

indicating no effect (Table 2).  369 

 370 

Early in the time series, fish were concentrated in the northeast corner of the EBS with few fish in any depth layer 371 

closer to inshore, but by 2018 fish were more evenly distributed over the study region (Fig. 3). We also found 372 

subareas of consistent vertical availability across all years. For example, in the southwest corner of the EBS the 373 

bottom trawl availability is low, whereas in the southeast area (which is shallower) the availability of pollock to 374 



the acoustic survey is lower (Fig. 4). The spatial patterns in availability by gear type in other areas varied among 375 

years.  376 

 377 

Each of the three depth layers, summed across the whole EBS, contained approximately equal biomass on 378 

average, but this varied by year (Table 3; Fig. 5a). In general, there was a decrease in the proportion of fish <0.5 379 

m off bottom (Fig. 5a), leading the availability in the acoustic survey to increase over time, and the opposite for 380 

the bottom trawl (Fig. 5b). Vertical gear availability (% fish available; Table 3) for the acoustic survey ranged from 381 

a low of 33.9% in 2008 to a high of  88.8% in 2017, although 2017 was a year without acoustic data so that estimate 382 

was more uncertain. The bottom trawl availability ranged from a low of 58.8% in 2016 to a high of 91.1% in 2009. 383 

The uncertainty around estimated quantities was notably higher in the years without acoustic data where the 384 

model interpolated densities above 16 m using the random walk temporal process (Fig. 5b-d). 385 

 386 

The combined index is the total biomass calculated by summing vertical depth layers and across space, and ranged 387 

from a low of 15.2 log metric tons in 2009 to a high of 17.3 in 2015 (Table 3, Fig. 5c). The gear-specific log-indices 388 

closely matched the trend and uncertainty of design-based estimates (Fig. S6) with a few exceptions. For instance 389 

the downward trend in the acoustic index between 2007 and 2009 was steeper compared to the design-based 390 

counterpart. The uncertainty in years with acoustic data was similar between the combined model and 391 

independent estimates, but for years without data the combined model had a truncated lower end of uncertainty. 392 

The bottom trawl indices were similar except a smaller uncertainty in the design-based estimates (Fig. S6).   393 

 394 

Simulation  395 

Our simulated data produced log-indices for the two gear types with distinct patterns (Fig. 6a,b). When fitting with 396 

maximum marginal likelihood, the median maximum gradients were all less than 1E-07 for the different model 397 

types, well below the cutoff for convergence. However, the combined model had several replicates with maximum 398 



gradients larger than 100. Despite this, the percentage of replicates failing our convergence criterion of 0.01 were 399 

roughly the same at 4.21%, 4.74%, and 5.79% for the acoustic, bottom trawl, and combined models respectively.  400 

After filtering out replicates that failed to converge, relative errors of the log-index for the self-test cases (Fig. 6c) 401 

were all small, generally less than 5%. They were unbiased for the combined model, but showed some bias for the 402 

acoustic and a slight trend for the bottom trawl. Only the combined model accurately estimated the total biomass, 403 

reflected as a vertical availability of one (Fig. 6d). Both the acoustic and bottom trawl had significant fractions of 404 

the biomass unavailable and this trend varied over time as the vertical distribution changed.  405 

Discussion  406 

We developed and applied a flexible approach to estimate semi-pelagic fish density divided into three vertical 407 

layers, covering the water column from sea floor to near surface. Because the method estimates spatiotemporal 408 

variation, it is not restricted to paired data with a consistent sampling design. Importantly, this means it can be 409 

fitted to data from distinct surveys providing unpaired data, with different spatial extents, sampling protocols, 410 

and spatial or temporal gaps (e.g., missing years). This occurs with dedicated acoustic and bottom trawl surveys, 411 

or failure of a single gear on a paired gear survey, and this flexibility in data used to fit the model increases the 412 

number of real-world data sets for which these methods could be applied relative to methods that require paired 413 

data. We found large variation in the availability of pollock to both gear types (among years and spatially), 414 

suggesting that neither data type sufficiently characterizes a consistent portion or the entire population. In 415 

contrast, our combined index directly accounts for the total vertical population, regardless of how vertical 416 

availability to gears changes in space and time. Thus, this developed approach mitigates index inaccuracies 417 

compared to either survey in isolation. In addition, the combined index accounts for variability in vertical 418 

availability and consequently provides more accurate uncertainty estimates, another important property required 419 

for stock assessments (Kotwicki et al., 2018; Kotwicki and Ono, 2019). We argue that our combined method 420 

represents an important new tool for analyzing vertically overlapping survey data for semi-pelagic stocks, and 421 



note that important insights can be gleaned from existing data without the cost of additional survey effort (as 422 

demonstrated by the pollock case study). Our method could be applied to other semi-pelagic species with similar 423 

data, and we provide a working example based on freely available software tools as a starting point 424 

(Supplementary Materials). 425 

  426 

The key statistical development of this paper is the derivation of approximate likelihoods for the joint sampling 427 

by bottom trawl gear over two depth layers (eqns. 4-6), and their implementation in the open-source statistical 428 

software VAST (Thorson, 2019). This derivation relies on two important assumptions. First, we assumed the 429 

measurement process between the two depth layers is independent, conditional upon the latent state (random 430 

effects). We hypothesize that fish behavior (e.g., net response, microhabitat selection) occurs at finer spatial 431 

scales than the course spatial processes that represent average density as estimated by the model (i.e., the spatial 432 

resolution). Second, we assumed the expectation of the positive observation component of the sampling process 433 

can be approximated by summing the expected positive observation of the two overlapping layers. The resulting 434 

distribution of joint sampling has the correct mean, but differs in the other statistical moments. We saw no 435 

evidence in the model residuals that the independence assumption was violated (Figs. S4a-c), nor that the 436 

approximation was inaccurate (Fig. S2). Furthermore, our predicted indices closely matched the trend and 437 

uncertainty in design-based methods and spatiotemporal models fitted to each survey data separately (Fig. S6). 438 

Despite this, it is important to highlight these statistical assumptions and further research investigating their 439 

effects would be valuable. We suggest exploring this through simulation or explicitly modeling the correlation of 440 

the data among the depth layers.  441 

 442 

We encountered statistical problems fitting the model to the pollock data. We used Bayesian inference because 443 

maximum marginal likelihood estimation via the Laplace approximation, the standard VAST approach, was 444 

unreliable. Since VAST is not parameterized to optimize MCMC sampling for Bayesian inference, we had to rescale 445 



some parameters to improve MCMC convergence (Supplementary Materials). We also had to simplify the loadings 446 

matrices which control how depth layers are correlated, such that each layer was independent, to avoid a multi-447 

modal posterior, which also causes issues with maximum likelihood. Finally, we had to assume the geostatistical 448 

parameters (related to decorrelation range and anisotropy) were known because of the inability to estimate them 449 

using available statistical software. Fortunately, the result was good convergence and a general insensitivity of 450 

the resulting index to these assumptions (Supplementary Materials). Unfortunately, these specialized 451 

modifications to VAST make it more difficult to apply our method on other case studies, and omitting estimation 452 

of the geostatistical properties within the model could be an issue in other contexts. Many of these challenges 453 

could be alleviated if maximum likelihood estimation were viable. Our simulation study demonstrated that it can 454 

be viable and reliable for simple models, at least when the data are consistent with the model structure and 455 

assumptions. However, simulation configurations with spatiotemporal effects had similar estimation issues as our 456 

case study (Supplementary Material), suggesting our method may not be compatible with maximum likelihood in 457 

general. Bayesian integration in VAST could be improved with rescaling and reparameterizing to be more 458 

commensurate with integration instead of optimization, which could also lead to benefits in other settings. In 459 

particular, we recommend testing alternative parameterizations for the spatial and spatiotemporal effects, which 460 

affect performance in hierarchical models, and the parameterization of the geostatistical range and anisotropy.  461 

 462 

The pollock case study also has some important caveats. First, data came from two surveys on separate vessels, 463 

which sampled in different spatial footprints (Fig. 2) and at different times (up to a month apart; Fig. S1). We 464 

ignored seasonal (within year) differences in population density between surveys, and recognize that analyzing 465 

density for two surveys that occur several weeks apart could be problematic due to complex environmental 466 

dynamics driving fish behavior and distribution. However, we found no evidence that this led to difficulties in 467 

fitting the pollock data (Fig. S5). We also added acoustic data from the eastern EBS, which typically has low 468 

densities off-bottom and was not sampled by the acoustic survey (Fig. 2). Spatial patterns in the region were highly 469 



dependent on this assumption, but the combined index was generally insensitive to the approach taken because 470 

of the relatively low biomass. Second, the only covariate included in this study was depth because data on other 471 

potentially important factors known to affect pollock availability (e.g., light attenuation, Kotwicki et al., 2015) 472 

were unavailable for the entire time series. We expect that including factors such as fish length, sediment size, 473 

water temperature and light intensity could lead to an improved model fit. Despite these issues, our results are 474 

corroborated by a similar estimate of efficiency between gears (1.18, 0.99-1.41) using a different set of acoustic 475 

data (0.96, 0.49-1.42; Kotwicki et al., 2013), and similar results using design-based estimators (Fig. S6). Ultimately, 476 

it may be possible to resolve both of these data issues using acoustic data collected on the bottom trawl survey 477 

(e.g., Honkalehto et al., 2011; Kotwicki et al., 2013), although it is beyond the scope of this analysis. We used 478 

acoustic data distant from trawl sites (via separate surveys), and similarly found that the precision of the trawl 479 

index was relatively unchanged (Fig. S6), reflecting the general finding of other studies which used inter-site 480 

transects (e.g., Hjellvik et al., 2007). As noted by von Szalay et al. (2007), this could be caused by a poor correlation 481 

due to vertical distributions that varies spatiotemporally, an observation we confirmed in this study (Fig. 3). Similar 482 

to Kotwicki et al. (2018) we modeled the overlap and thus directly relied on an accurate effective fishing height 483 

resulting from fish response to the gear. We used 16 m in our case study (based on Kotwicki et al., 2013), but a 484 

sensitivity run with 3 m demonstrated similar index trends, albeit a different scale (Supplementary material). This 485 

work would benefit from further refinements to fish diving behavior and effective fishing heights based on 486 

experimental studies for pollock, but also application to other data sets such as the Barents Sea cod or haddock 487 

for general validation of the method.  488 

 489 

Pollock appeared to exhibit a general decreasing trend of availability to the bottom trawl survey over time. We 490 

initially hypothesized that this could be explained by a general decrease in average age within the population with 491 

time. For e.g., younger pollock are typically more pelagic than older ages, and thus are less available to the bottom 492 

trawl survey and more available to the acoustic trawl survey. During the study period, the proportion (by mass) 493 



of 2- and 3-year-old pollock estimated to be in the population ranged from a low of 15% to a high of 52% (as 494 

computed from tables in Ianelli et al., 2019). However, counter to our expectations, the trends in bottom trawl 495 

pollock availability and proportion of 2-3 year-olds in the population were not negatively correlated over time. 496 

This lack of correspondence in trends could be due to differences in the (horizontal) spatial effort of the two 497 

surveys or to spatial patterns that were obscured when aggregated across space. Our study framework also 498 

assumes that movement into and out of the survey area are negligible. For example, multiple years of acoustic-499 

trawl survey extension into Russia have observed a mean of only 7% of the entire shelf-wide pollock (n=9, 1-22%; 500 

Honkalehto and McCarthy, 2015) present on the Russian side of the U.S.-Russia maritime boundary. If the 501 

negligible movement assumption were violated, it could partially explain the lack of a relationship in trends. There 502 

are also various potential biological drivers such as reaction to changing pollock density or shifts in predatory or 503 

prey species, and oceanographic ones like changes in distribution of light or temperature. Further exploration of 504 

potential environmental and biological drivers of vertical and horizontal distribution shifts would be worthwhile 505 

to improve understanding and application in the stock assessment.   506 

 507 

One application of our results within a stock assessment model would be to allow inclusion of annual availability 508 

estimates. This would better inform the model about how an index may change due to vertical shifts (in contrast 509 

to standard practice, which assumes a constant value for the catchability coefficient for this index). For example, 510 

if the estimate of annual acoustic availability decreased then it would not errantly attribute such changes to 511 

changes in stock biomass. Alternatively, each index could be adjusted externally based on estimated availability, 512 

but this may complicate how the uncertainty of the index should be specified. Another extension of our work 513 

would be to model size- or age classes from both surveys within the layers considered for the combined index. 514 

This would be computationally more intensive but could resolve some observed patterns in different age 515 

structures throughout the water column.  516 

 517 



Although our focus here was on improving indices used in stock assessment models, our method could provide 518 

valuable insights in other applications as well. For example, much effort has been dedicated to understanding 519 

distribution shifts and how they are likely to be affected by future climate change (e.g., Perry et al., 2005) but 520 

typically draw conclusions from a single survey source (e.g., Thorson et al., 2017). If such surveys have inaccuracies 521 

that vary over time, these types of analyses may lead to inappropriate conclusions. If vertical shifts manifest as 522 

changes in density, then estimates of distributional quantities such as center of gravity would also be incorrect. In 523 

general, estimates from our method could also help improve ecological studies which use spatial abundance such 524 

as food web studies (e.g., Aydin and Mueter, 2007) or design of surveys (e.g., Overholtz et al., 2006). Thus, 525 

improved estimates of the distribution of semi-pelagic species would improve ecological understanding in 526 

addition to the benefits to fisheries management. 527 

Supplementary material 528 

The following supplementary material is available at ICESJMS online. Supplemental tables and figures with extra 529 

results, further details and sensitivity tests for the effective fishing height, estimation of spatial factors, 530 

configuration of catchability parameters, the geospatial assumptions, and spatial configuration. A reproducible 531 

example is also provided and links to an online repository. Finally, we give more details of the simulation study 532 

and how we setup VAST for Bayesian integration with the package tmbstan.  533 

Data Availability Statement 534 

The data underlying this article are available in the following repository: 535 

https://github.com/Cole-Monnahan-NOAA/stpollock.  536 

https://github.com/Cole-Monnahan-NOAA/stpollock


Acknowledgements 537 

This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under 538 

NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2019-1025. We thank Kasper Kristensen and 539 

Paul Conn for helpful feedback on technical aspects of the study, and Kelli Johnson, Pete Hulson, Rebecca Thomas, 540 

Sam Urmy, Taina Honkalehto, Cecilia O’Leary, Lewis Barnett, Alex De Robertis, Nicholas Bez, Olav Rune Godø, and 541 

two anonymous reviewers for helpful feedback on an earlier draft.  542 



Tables 543 

Table 1. Annual number of observations of pollock for the acoustic and bottom trawl surveys, including inflated 544 

zeroes which extend the acoustic spatial extent into a region where the bottom trawl samples but we assumed 545 

no fish would have been detected by acoustics (see Fig. 2). The acoustic observations were binned (grouped 546 

spatially and averaged). Note the years in which there was no acoustic survey conducted. 547 

 548 

Year 

Total Binned 

Acoustic Acoustic Inflated (%) 

Bottom 

Trawl 

2007 469 48 (10.2) 376 

2008 470 42 (8.9) 375 

2009 455 43 (9.5) 376 

2010 454 43 (9.5) 376 

2011 0 0 376 

2012 473 48 (10.1) 376 

2013 0 0 376 

2014 477 48 (10.1) 376 

2015 0 0 376 

2016 509 41 (8.1) 376 

2017 0 0 376 

2018 523 41 (7.8) 376 

  549 



Table 2. Parameter estimates for fixed effects from the combined model. Posterior median and 95% credible 550 

intervals are given by depth layers and for the first (n) and second (w) linear components (see eqn. 7). The last 551 

three parameters are not indexed by layers and instead apply to the gear types. The parameters for anisotropy 552 

and decorrelation range are not estimated but instead fixed (see Supplementary material). ‘SD’ is standard 553 

deviation. The spatial and spatiotemporal SD represent the SD of the estimated spatial fields and are hierarchical 554 

variance terms (see Table S1 as well). Likewise, the SD of the random walk process is a hierarchical variance 555 

controlling the amount of smoothing of annual intercepts.  556 

 557 

VAST Name Symbol Description < 0.5 m 0.5-16 m >16 m Component 

gamma1_ctp[1] 𝛾𝛾𝑛𝑛 Depth effect -0.02 (-0.47–0.43) -0.20 (-0.39–-0.01) 0.22 (0.05–0.39) Group density 

L_omega1_z[1] 𝐿𝐿𝜔𝜔𝑛𝑛 Spatial SD  1.58 (0.91–2.31) 1.88 (1.46–2.36) 2.28 (1.78–2.78) Group density 

L_epsilon1_z[1] 𝐿𝐿𝜀𝜀𝑛𝑛 Spatiotemporal SD  0.59 (0.26–0.96) 0.58 (0.41–0.78) 1.31 (1.12–1.54) Group density 

L_beta1_z[1] 𝜎𝜎𝛽𝛽𝑛𝑛
2  

SD  of random walk 

temporal process 0.16 (0.01–0.61) 0.15 (0.01–0.54) 0.40 (0.02–1.47) Group density 

Beta_mean1_c[1] 𝜇𝜇𝛽𝛽𝑛𝑛 

Mean of random walk 

temporal process -0.62 (-2.39–1.16) 0.23 (-1.71–2.11) -1.12 (-3.38–0.97) Group density 

gamma2_ctp[1] 𝛾𝛾𝑤𝑤 Depth effect 1.77 (1.20–2.40) 0.39 (0.16–0.62) -0.32 (-0.54–-0.10) 

Biomass per 

group 

L_omega2_z[1] 𝐿𝐿𝜔𝜔𝑤𝑤 Spatial SD  2.32 (1.71–2.90) 2.32 (1.88–2.77) 0.65 (0.05–1.29) 

Biomass per 

group 

L_epsilon2_z[1] 𝐿𝐿𝜀𝜀𝑤𝑤  Spatiotemporal SD  1.17 (0.94–1.41) 1.34 (1.20–1.50) 1.01 (0.84–1.19) 

Biomass per 

group 

L_beta2_z[1] 𝜎𝜎𝛽𝛽𝑤𝑤
2  

SD  of random walk 

temporal process 0.39 (0.02–1.10) 0.33 (0.02–1.08) 0.56 (0.04–1.64) 

Biomass per 

group 

Beta_mean2_c[1] 𝜇𝜇𝛽𝛽𝑤𝑤  

Mean of random walk 

temporal process 6.85 (4.26–9.29) 4.37 (1.77–7.01) 5.31 (3.38–7.26) 

Biomass per 

group 

logSigmaM[1] log𝜎𝜎𝐵𝐵𝐵𝐵 

SD of BT observation 

error 0.44 (0.42–0.47) -- -- Bottom trawl 

logSigmaM[2] log𝜎𝜎𝐴𝐴𝐵𝐵 

SD of AT observation 

error 0.48 (0.46–0.50) -- -- Acoustic 



lambda2_k 𝜆𝜆𝑤𝑤 Catchability effect 0.17 (-0.01–0.34) -- -- 

Biomass per 

group 

 558 

559 



Table 3. Annual results from the combined model after integrating across space. <0.5m, 0.5-16m, and >16m are 560 

the depth layers used in the model, which respectively are the acoustic dead zone, the overlap, and the bottom 561 

trawl blind zone. Quantities are median and 95% credible intervals in parentheses for total density, others left off 562 

for clarity. Emphasized rows are those years without any acoustic data, leading to higher uncertainty.  563 

 

Log-density (metric 

tons/km2)       Proportion biomass by strata Vertical availability by gear 

Year Total <0.5 m 0.5-16 m >16 m <0.5 m 0.5-16 m >16 m Acoustic Bottom Trawl 

2007 16.18 (15.87-16.63) 15.51 14.85 14.65 0.51 0.27 0.22 0.49 0.78 

2008 15.94 (15.60-16.39) 15.52 14.32 13.97 0.66 0.20 0.14 0.34 0.86 

2009 15.21 (14.89-15.61) 14.56 14.24 12.79 0.53 0.38 0.09 0.48 0.91 

2010 16.36 (16.05-16.73) 15.72 14.30 15.25 0.53 0.13 0.34 0.46 0.67 

2011 16.44 (15.93-18.00) 15.41 15.19 15.32 0.35 0.28 0.37 0.65 0.66 

2012 16.30 (16.08-16.55) 15.31 15.04 15.21 0.37 0.29 0.34 0.63 0.66 

2013 16.72 (16.18-18.07) 15.60 15.47 15.64 0.33 0.29 0.38 0.69 0.65 

2014 17.01 (16.77-17.32) 15.99 16.07 15.58 0.37 0.39 0.25 0.64 0.76 

2015 17.28 (16.80-18.54) 16.10 16.19 16.15 0.31 0.33 0.36 0.69 0.67 

2016 16.94 (16.77-17.19) 15.43 15.93 16.05 0.23 0.36 0.41 0.78 0.59 

2017 16.95 (16.42-18.46) 14.78 16.16 16.05 0.12 0.45 0.43 0.89 0.59 

2018 16.31 (16.12-16.70) 14.88 15.26 15.36 0.26 0.35 0.39 0.76 0.61 
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 569 

Figure 1. Conceptual issue with gears with acoustic dead and blind zones and temporal trends in vertical distribution for a 570 

semi-pelagic fish. (a) Schematic of gear types showing acoustic (AT) sampling directly under the vessel, the vertical herding 571 

to create a larger effective height than physical fishing height for the bottom trawl (BT), which is behind the vessel; and the 572 

three depth layers (horizontal lines, defined by h1 and h2 as measured relative to sea bottom), vertical blind and dead zones 573 



(regions of unavailability), and the overlap where both gears sample; recreated from Kotwicki et al. (2018) with permission. 574 

The acoustic blind zone near the surface is left off for visual clarity. (b) A simulated example, where the abundance in the 575 

three depth layers (measured from bottom; <0.5 m is the AT dead zone, 0.5-16 m is the overlap, and >16 m the BT blind zone) 576 

exhibit distinct annual trends. (c) The percent of fish available to each gear type relative to the total (sum of all three depth 577 

layers). Note that in a given year the sum of the gears’ availability is not 100% because of the overlap layer sampled by both. 578 

  579 



 580 

 581 

Figure 2. Experimental design showing the two surveys that have spatiotemporal sampling patterns. The acoustic 582 

survey did not sample in years 2011, 2013, 2015, and 2017, and also never in the southeast portion of the study 583 

extent (eastern Bering Sea; black outline), so we inflated it with hypothetical data (gray points, see main text). The 584 

bottom trawl points are fixed stations, while the acoustic points are midpoint locations after averaging across 20 585 

acoustic intervals; the black line defines the region where densities are predicted and then summed when 586 

calculating an abundance index, despite some acoustic observations being outside this extent. 587 
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 589 

Figure 3. Estimated log-density (colors, metric tons/km2) of pollock for three select years (rows) for the combined 590 

model. Columns represent the density available to the gear types, which for the acoustic is the sum of density 591 

above 0.5 m off bottom, and bottom trawl is the sum of density below 16 m off bottom, while the total is the sum 592 

of the entire vertical water column (bottom to surface). The gray squares are the locations of inflated acoustic 593 

data which are in a region unsampled by the acoustic survey (see Fig. 2, main text).  594 

  595 



 596 

 597 

 598 

Figure 4. Estimated spatial availability (i.e., percentage of pollock available to a gear type at a location) for three 599 

select years (rows) for the acoustic and bottom trawl surveys (columns) from the combined model. The gray 600 

squares are the locations of inflated acoustic data which are in a region unsampled by the acoustic survey (see 601 

Fig. 2 and main text). 602 
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 605 

 606 

  607 

Figure 5. Annual results from the combined model fit to pollock, where years without acoustic data are indicated 608 

in all panels using x-axis dashes and are estimated with a temporal smoother within the model, resulting in higher 609 

uncertainty. (a) Vertical distribution (posterior median proportions after integrating across space) of fish density 610 

for the three depth layers, with uncertainty left off for visual clarity. (b) Vertical availability by gear type (colors), 611 

shown as the median and 95% credible interval (lines and ribbons). Comparison of estimated abundance indices 612 

by gear type (c) and depth layer (d), where points are medians and vertical bars are 95% credible intervals.  613 



 614 

  615 

Figure 6. Results of simulation study. Individual lines show simulation replicates and think black lines the average 616 

across them. (a) the true log-index by depth layer used; (b) the true index available to each gear type; (c) the 617 



estimation bias compared to the truth for each gear type to its own truth (a self-test); and (d) the resulting 618 

estimated vertical availability compared to the truth for the whole water column when fitting to the two gear 619 

types separately or with the combined model developed here.  620 
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